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Dense solid microstructures with unbounded thermal expansion
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Abstract
Analytical bounds on the physical properties of multiphase media provide limits on

properties attainable with variation of phase geometry. We present examples which substantially
exceed the bounds for thermal expansion of a two-phase composite, by allowing slip at interfaces
between phases. New classes of materials with extreme properties are envisaged, based on slip
interfaces.

Microstructure in multiphase materials such as composites and biological tissues may be so
complex that theoretical prediction of aggregate physical properties from constituent properties
becomes difficult or impossible. Consequently, it is useful to develop analytical bounds upon
properties in order to constrain the range of properties which may be expected. Bounds are useful
in relating the properties of macroscopic polycrystalline materials to those of single crystals [1], in
guiding the pursuit of optimal microstructure in composites [2], and in understanding biological
composites such as bone [3,4].  Early work on bounds dealt with stiffness [5-7]. More recently
other physical properties have been considered.

For example, bounds have been developed for the thermal expansion coefficient α of

composite materials of two solid phases in terms of constituent expansion coefficients α1 and α2

[8,9]. The upper bound is a rule of mixtures α = α1V1 + α2(1 -V1), in which V1 is the volume
fraction of the first phase. In deriving these bounds it was tacitly assumed that the two phases are
perfectly bonded and with zero void content. We show that arbitrarily high thermal expansions can
be achieved in composites with interfaces which allow slip.

To that end, envisage rib elements of composite microstructure, each of which is a bi-layer
made of two bonded layers of differing thermal expansion coefficient α. The layers have Young's

moduli (stiffness) E1 and E2, thermal expansion coefficients α1 and α2; and thicknesses h1 and h2.

The bi-layer bends in response to temperature changes. The curvature κ (the inverse of the radius

of curvature ρ) of such an unconstrained thin elastic bi-layer is given in terms of the temperature

change ∆T  by [10].
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The quantity in the {} brackets is defined here as Γ. Such rib elements can be assembled into a

lattice or honeycomb in which there is no constraint on rib bend. The thermal expansion α of such
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a cellular solid due to longitudinal displacement of initially curved rib elements of arc length larc,

and included angle θ, is [11]:
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Expansion due to rib bending depends on each constituent having a different expansion coefficient.
Expansion α becomes large as bi-layers become slender, larc/(h1+ h2) >> 1 and as the included

angle θ becomes large. The thermal expansion coefficient α of a cellular solid structure based on
these bi-layers is therefore unbounded [11]. It can be made much larger in magnitude than the
thermal expansion coefficient of either solid constituent.

Inclusion of void space of appropriate shape in a composite microstructure can give rise to
unusual mechanical properties such as a negative Poisson's ratio [12]. Void space is not, however
a necessary condition to achieve negative Poisson's ratio; a hierarchical laminate with dissimilar
constituents also has this property [13]. A common aspect is non-affine or inhomogeneous
deformation [14].

For unbounded thermal expansion a cellular solid structure is not necessary either; it is
sufficient that the composite contain interfaces which can undergo slip. A simple two-dimensional
illustration is shown in Fig. 1, which shows an anisotropic laminate of curved bi-layers with
slipping interfaces between bi-layers. One phase is represented by white, the other by black. The
thermal expansion in the horizontal direction follows the relation for individual bi-layers, Eq. 2,
since, with slip, there is no constraint on the expansion of each bi-layer. As horizontal expansion
occurs, the corresponding volume is accommodated from undulations on the top and bottom
surfaces as the bi-layers straighten.

High expansion in two directions can be achieved in several dense structures containing bi-
layer elements. Fig. 2 shows an example with multiple length scales. Each bi-layer is assumed to
have the same included angle θ. Since larc is proportional to the radial distance from the center of

the pattern, a constant expansion strain  ε may be achieved by shaping the bi-layers so that the bi-
layer thickness h1 + h2 is proportional to the radial distance from the center of the pattern. As with
the structure in Fig. 1, volume change occurs by surface undulations rather than internally. Fig. 3
shows an example of a random two-dimensional structure with multiple size scales, in which slip
during expansion causes microscopic voids to open within the structure, giving rise to expansion
with volume change. Rib expansion is fully unconstrained in this case only if there is a compliant
interphase boundary between inclusions; this could be a microporous layer of one phase. Other
examples are possible as well, including hexagonal structures which are mechanically isotropic.

The sign of the thermal expansion coefficient of layered composites is governed by the
placement of the constituents within each bi-layer. Specifically, if the constituent with the higher
thermal expansion coefficient is on the concave side of each bi-layer, composite thermal expansion
is positive since an increase in temperature will cause each bi-layer to straighten. Negative thermal
expansion coefficients will occur if the higher expansion constituent is on the convex side of each
bi-layer. We remark that molecular design of materials with moderate values of negative linear and
volumetric thermal expansion has been conducted [15].

Dense two-dimensional microstructures could be produced by a co-extrusion process, by
progressive lamination, or by lithography. One may also envisage three-dimensional
microstructures containing graded onion-like laminations, though manufacture may prove
challenging.

Use of slip type interfaces or void space to exceed the conventional bounds is applicable to
cross properties in materials which exhibit coupled field phenomena. In the present example,
thermal expansion couples the mechanical (strain and stress) and thermal (temperature and entropy)
fields. Other coupled field phenomena include piezoelectricity, pyroelectricity, electro-optics,
stress-induced fluid flow in porous media, and swelling or shrinkage due to hydration changes. By
contrast, stiffness, a direct property, is the ratio of stress to strain. In a material with cracks as a
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type of slip interface, stiffness is reduced [7,16,17]. Effects of the slip interfaces considered here
are entirely distinct from effects, due to resonant phenomena [18], of "homeopathic" (arbitrarily
small) concentrations of a third phase on dielectric properties.

The present model structures illustrate the importance of assumptions in the demonstration
of bounds. Since inclusion of slip interfaces can have a large effect on composite material
properties, we envisage new classes of materials with extreme physical properties.
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Figures
Fig. 1 Orthotropic dense laminate with a thermal expansion which becomes unbounded as the

strip thickness becomes small. One phase is represented by white, the other by black.
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Fig. 2 Cubic dense laminate with a thermal expansion which becomes unbounded as the strip
thickness becomes small. The ribs become arbitrarily thin as the center of each cell,
therefore the center is not shown.
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Fig. 3 Random dense structure with laminated inclusions of different size. Curved laminae are
alternately bonded and free to slip as in Fig. 1 and 2.


